202 research outputs found

    Security of 5G-V2X: Technologies, Standardization and Research Directions

    Full text link
    Cellular-Vehicle to Everything (C-V2X) aims at resolving issues pertaining to the traditional usability of Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) networking. Specifically, C-V2X lowers the number of entities involved in vehicular communications and allows the inclusion of cellular-security solutions to be applied to V2X. For this, the evolvement of LTE-V2X is revolutionary, but it fails to handle the demands of high throughput, ultra-high reliability, and ultra-low latency alongside its security mechanisms. To counter this, 5G-V2X is considered as an integral solution, which not only resolves the issues related to LTE-V2X but also provides a function-based network setup. Several reports have been given for the security of 5G, but none of them primarily focuses on the security of 5G-V2X. This article provides a detailed overview of 5G-V2X with a security-based comparison to LTE-V2X. A novel Security Reflex Function (SRF)-based architecture is proposed and several research challenges are presented related to the security of 5G-V2X. Furthermore, the article lays out requirements of Ultra-Dense and Ultra-Secure (UD-US) transmissions necessary for 5G-V2X.Comment: 9 pages, 6 figures, Preprin

    Dissimilarity metric based on local neighboring information and genetic programming for data dissemination in vehicular ad hoc networks (VANETs)

    Get PDF
    This paper presents a novel dissimilarity metric based on local neighboring information and a genetic programming approach for efficient data dissemination in Vehicular Ad Hoc Networks (VANETs). The primary aim of the dissimilarity metric is to replace the Euclidean distance in probabilistic data dissemination schemes, which use the relative Euclidean distance among vehicles to determine the retransmission probability. The novel dissimilarity metric is obtained by applying a metaheuristic genetic programming approach, which provides a formula that maximizes the Pearson Correlation Coefficient between the novel dissimilarity metric and the Euclidean metric in several representative VANET scenarios. Findings show that the obtained dissimilarity metric correlates with the Euclidean distance up to 8.9% better than classical dissimilarity metrics. Moreover, the obtained dissimilarity metric is evaluated when used in well-known data dissemination schemes, such as p-persistence, polynomial and irresponsible algorithm. The obtained dissimilarity metric achieves significant improvements in terms of reachability in comparison with the classical dissimilarity metrics and the Euclidean metric-based schemes in the studied VANET urban scenarios

    A Tree-based Hierarchy Data Storage Framework in a Pervasive Space

    Get PDF
    Context data is important information for catching the behaviors of applications in a pervasive space. To effectively store huge amount of data, tree-like layered storage architecture is proposed, where the leaf nodes collect data from sensing devices. In order to integrate data from mobile devices, the related leaf nodes that get data from the same device should upload and store the data to the host node. This paper presents a deep study of the data storage problem and proposes a global algorithm GHS and an online algorithm DHS to dynamically select the host node, which reduces the communication cost significantly. This paper also gives the theoretical and experimental analysis of these algorithms, which shows both GHS and DHS are correct and effective

    Security management for backhaul-aware 5G-V2X

    Full text link
    Security is a primary concern for the networks aiming at the utilization of Cellular (C) services for connecting Vehicles to Everything (V2X). At present, C-V2X is observing a paradigm shift from Long Term Evolution (LTE) - Evolved Universal Terrestrial Radio Access Network (E-UTRAN) to Fifth Generation (5G) based functional architecture. However, security and credential management are still concerns to be resolved under 5G-V2X. A sizably voluminous number of key updates and non-availability of sub-functions at the edge cause adscititious overheads and decrement the performance while alarming the possibilities of variants of cyber attacks. In this paper, security management is studied as a principle of sustainability and its tradeoff is evaluated with the number of key-updates required to maintain an authenticated connection of a vehicle to the 5G-terminals keeping intact the security functions at the backhaul. A numerical study is presented to determine the claims and understand the proposed tradeoff.Comment: 4 pages, 3 figures, 1 table, Conference on Information Security and Cryptography-Winter (CISC-W), December 8, 2018, Seoul, South Kore

    An Adaptive Context-Aware Transaction Model for Mobile and Ubiquitous Computing

    Get PDF
    Transaction management for mobile and ubiquitous computing (MUC)aims at providing mobile users with reliable and transparent services anytime anywhere. Traditional mobile transaction models built on client-proxy-server architecture cannot make this vision a reality because (1) in these models, base stations (proxy) are the prerequisite for mobile hosts (client) to connect with databases (server), and 2)few models consider context-based transaction management. In this paper, we propose a new network architecture for MUC transactions, with the goal that people can get online network access and transaction even while moving around; and design a context-aware transaction model and a context-driven coordination algorithm adaptive to dynamically changing MUC transaction context. The simulation results have demonstrated that our model and algorithm can significantly improve the successful ratio of MUC transactions
    • …
    corecore